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Essence of the paper

Explaining asset prices using SDF is a fundamental problem in finance

Et(Mt+1Ri,t+1) = 0 ∀i , where Mt+1 is the SDF (1)

For e.g., in a CAPM world Mt+1 = a + bMktt+1, for some a, b ∈ R

However, evidence shows that linear SDFs do not explain asset returns well

I Frazzini and Pedersen (2014), Ang et al (2006) document pricing residuals from
“linear asset pricing models” explain asset returns

I A limitation of these studies is that pricing residuals change with the benchmark
linear model

This paper: Generalized model for pricing residuals (w.r.t linear SDFs)

I Builds on Hansen and Jagannathan framework

I Linear SDFs violate no-arbitrage restriction

I So, adds non-linear SDF to the linear SDF to yield no-arbitrage, and calls
the non-linear SDF as the pricing residual
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Contribution 1: Decomposing SDFs

The paper starts with incomplete markets assumption

I So, many candidate SDFs that price returns

I Choose the minimum variance SDF,

minEt(M
2
t+1) with Et(Mt+1Ri,t+1) = 0, ∀i , and Mt+1 > 0 (2)

The paper considers SDF candidates in a polynomial space

Mt+1 = C0 +
∑
i

CitRi,t+1︸ ︷︷ ︸
Linear(M∗)

+
∑

CαtR
α1
1t+1R

α2
2t+1 . . .R

αn
nt+1︸ ︷︷ ︸

Nonlinear(MO )

(3)

Thus, Mt+1 = M∗
t+1 + MO

t+1, where M∗
t+1 � 0, but Mt+1 > 0

The paper shows M∗ ⊥ MO , and calls MO mispricing SDF
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Contribution 2: Estimating SDFs

Estimating the SDF involves computation of conditional return moments
(E
[
Rα1
1t+1R

α2
2t+1 . . .R

αn
nt+1|Zt

]
)

The paper uses the kernel-trick to estimate the conditional moments

Intuition for kernel-trick: Suppose the goal is to estimate
E
[
Rα1
1t+1R

α2
2t+1 . . .R

αn
nt+1|Z

∗]
I Go back to the past data and find periods “t” s.t Zt ≈ Z∗

I Take the sample average of Rα1
1t+1R

α2
2t+1 . . .R

αn
nt+1 over the similar periods t

To be precise, take the weighted average of Rα1
1t+1R

α2
2t+1 . . .R

αn
nt+1, where weights

are proportional to k(Zt ,Z
∗)
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Empirical Contribution

The paper examines the cross-section of aggregate equity, short-term bonds,
and exchange rates of US, UK, Canada, Switzerland, New Zealand, Japan, and
Euro area

Key Findings

1. Residual mispricing (RMP) relates to financial uncertainty

2. RMP positively priced in the cross-section

3. RMP relates to financial distress (intermediary squared leverage)

4. RMP relates to market-wide liquidity shocks

5. RMP high during high periods of liquidity
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Question 1:

To estimate conditional expected returns, the paper uses information only from
two variables: Zt = {interest rate differentials, realized volatility}

Question: How robust is this specification?

1. For e.g., Pelger,Chen, and Zhu (2020) consider linear SDFs with no-arbitrage

2. PCZ’s SDF = MPCZ
t+1 = 1−

∑
witRi,t+1, where wit exploits “large information”

3. In contrast to this paper, pricing error of MPCZ
t+1 during crises is small

4. IVOL is negatively priced, whereas RMP is positively priced. Why?

So, if Zt contains more information, would the results still hold?

Related question: How would you decide on what information set to use?
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Question 2:

RMP is defined w.r.t M∗
t = C0 +

∑
i CitRi,t+1, which is the non-positive linear

SDF of Hansen and Jagannathan

Question: How standard is this benchmark linear model?

1. For e.g., the paper calls this model “linear market model”

2. However, shouldn’t the market SDF contain the market factor, i.e.,
Mmkt

t = a + bMktt?

3. Thus, Mmkt
t need not be equal to M∗

t ?

4. Likewise, how close is M∗
t relative to the (SDF implied by) common linear

risk factors documented in the international equity markets?
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Question 3:

RMP uses current return information, MO
t+1 =

∑
CαR

α1
1t+1R

α2
2t+1 . . .R

αn
nt+1

Question: So, is RMP an ex-post measure?

If yes, would it be possible to ex-ante identify when linear models have large
pricing errors?

I For e.g., BAB, IVOL are ex-ante measures
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Conclusion

1. Very interesting paper!

2. Personally, have learned a lot from the paper

3. Look forward to reading an updated version
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